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Let {Pn} (n E Z +) denote the sequence of orthonormal polynomials with respect
to the weight w( x)( - 1 ::;; x ::;; 1). The representation of the kernel

k-O

is given. We use this result to construct a "double-humpbacked majorant" of the
kernel ;Z!.(x, y, z) to estimate the Lebesgue quasifunction, and to compute the
infinite sums

k=O

which appear in some problems of mathematical physics and in the theory of group
representations. © 1991 Academic Press, Inc.

1. INTRODUCTION

Let w(x) be nonnegative in [-1,1] and positive almost everywhere on
[-1,1], and suppose

r w(x)dx<tXJ.
-I

We can w(x) a weight function (weight). Associated with w(x) is the
sequence of orthonormal polynomials ONSP{Pn == P,,(Wi x)} (n E Z+ =
{O, 1,2, ... }), where

p,,(x) =knx" +
93
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has degree n with k n= kn(w) > 0 and

for m =n
for m =l=n.

The orthonormal polynomials satisfy the three-term recurrence relation
[12,p. 17; 48, pp.55-56]

xPn(x) = an Pn+ 1(x) + unPn(x) + an-I Pn_I(X)(P _I(X) == 0, n E 7L +), (1.1)

where, for n E 7L+, the recurrence coefficients an == an(w) and Un = un(w)
satisfy

and

Un =r xp~(x) w(x) dx.
-I

Note that

(1.2)

and, moreover (Rahmanov's theorem [46,28,47]),

(1.3)

A system of orthogonal polynomials for which the recurrence coefficients
satisfy (1.3) belongs to the class M==M(I, 0), introduced by Nevai [31].

Let us define

n n

.At;;=I+ L lak-!I+ L IUkl
k=O k=O

(1.4 )

where an, Un (n E 7L +) are the coefficients of the recursion formula (1.1).
The estimate

.At;; = o(n) (n -+ C1J) (1.5)

holds by virtue of (1.3).
By Favard's theorem [12, p. 60] the recursion formula (1.1) completely

determines the orthonormal sequence {Pn} (n E 7L +); therefore, many
investigations are devoted to ONSP {Pn} (n E 7L +), defined by the recur
sion formula. This is of interest in scattering theory, in chain sequences, or
in spectral theory of Jacobi matrices [1,6,8,15,24,34].
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With appropriate conditions of the recurrence coefficients one can obtain
properties of the weight w, asymptotics for {Pn} and the zeros ofPn(x),
weighted estimation, and so on [6, 8, 9, 15, 16, 19, 24, 31-34,49,50].

We also remark that the polynomials are generalized eigenfunctions in [2

for the Sturm-Liouville singular difference operator (see [6, Chap.
Sect. 1J)

(LW)n=an_1Wn_ 1 +unwn+anwn+1

= (V[a(Llw)])n+qnwn

where

W= {wn}, ~Wn = wn+~ - Wn, VWn=Wn- Wn_ 1}
a- {an}, qn-an 1 +an+Un

A fundamental role for the treatment of. expansions of functions in
orthogonal polynomials is played by the Christoffel-Darboux summation
formula

n

~n(X,Y)= I Pk(X)Pk(Y)
k~O

_ Pn+l(Y)Pn(X)-Pn(Y)Pn+l(X)(. . 71 ., [-111),-an· nEL+,y,XE ,.J'
Y-X

We consider the trilinear kernel

n

~n(X'Y,Z)= I Pk(X)Pk(Y)Pk(z)
k~O

which possesses the reproduction property: for every polynomial

n

nn(X) = I CkPk(X)
k~O

the relation

r nn(Z) ~n(X' Y, z) w(z) dz
-1

n

= I CkPk(X)Pk(Y)
k~O

holds.
The following problem often arises in mathematical physics and in the
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theory of group representations [10, 45, 51]: determine the sum of the
series

where

n

L AkPk(X)Pk(Y)Pk(Z)=:K(x,y,Z;A),
k=O

(1.7)

(1.8)

. IX+f3-y}'-l
sm 2 '

is any given sequence. For example, in [1O,45J for the orthogonal
ultraspherical polynomials {C~(x)} (r > 0) it is shown that

n {r(k+ 1) }l/Z
k~O (k + r) r(k +2r) C~(cos IX) C~(cos fJ) C~(cos y)

= 2 -Z'n[T(r)] -4 [sin IX sin fJ sin yr --z,

{
. IX+f3+y . f3+y-IX . IX- +

X ~ 2 ~ 2 ~ 2

where 0 < IX, 13, y < n, and a triangle can be drawn with sides IX, fJ, y,
assuming that the sum of any two of the sides is less than or equal to n;
otherwise the infinite sum is O.

The main purpose of this paper is to state a representation of the kernel
.@n(x,y, z). We apply this result to the computation of the infinite trilinear
sums (1.7), (1.8) and to the construction of a "double-humpbacked
majorant" of the trilinear kernel ~n(x, y, z).

Some of our results were discussed in [35-37]. Other applications of the
representation of the trilinear kernel .@n and of the estimation of a "double
humbacked majorant" will be given in forthcoming articles.

2. A FORMULA FOR THE KERNEL:

COMPUTATION OF THE TRILINEAR SUM

Let us define the function Tn(x) by the formulae

Tn(x) cos(n arccos x) (n = 1, 2, ... ), To(x)=1(-1~x~1).

Then Tn(x) is a polynomial of degree n with a positive leading coefficient.
The system

p~OJ(x) =ATn(x) (n = 1, 2, ... ),

1
pi?J(x) = fiTo(x)(-l~X~l)
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is the system of orthonormal polynomials with weight

97

( l<x<1)

(Chebyshev polynomials of the first kind). We have

(n~2)

and, consequentlY,the system {p~O)(x)} (n E £'+) belongs to Nevai's
M-class. Putting

x = cos iX, Y = cos p, (+ = COS(iX - P), (_ = COS(iX + /3),

we obtain

n

I Tk(x) Tk(y) Tk(z)
k=O

n n

=~ I Tk«(+) Tk(z)+! I Tk(C) Tk(z)
k=O k=O

and by the Christoffel-Darboux summation formula the sums on the right'
hand side becomes a sum of two fractions with denominators z - (_ and
z - ( +. So, if the recurrence relation (1.1) belongs to Nevai's M-c1ass, one
expects that the trilinear kernel has two peaks near z =, and z = , + .

Note that

C =xy-/(1-x2)(1- y2), (+ =xY+/O-x1)(1- y2)

( -1 ~ x, y ~ 1) (2.1)

so

(-l~x,y,z~l) (2.2)

and

(!_ -z)(z r ) 4' iX+P+y . a+p y. p+y-a . a-f3+y
, - '" + = sm 2 sm 2 sm 2 sm 2 '

(2.3)

where x = cos a, y = cos fJ, z =cos y (0 < iX, p, l' < 11:).
The next statement plays a fundamental role throughout this paper.
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LEMMA 2.1. For a general ONSP {Pn} (nEZ+) the/allowing represen
tation is valid:

(Z-C)(' + -z) ~n(x,Y, z)

=An(x, Y, z) + Bn(x, Y, z) + En(x, Y, z) (n E Z+; -1 ~x, Y, z~ 1), (2.4)

where

An(x, Y, z) = 2a~Pn+ 1(x) Pn+ I(Y) Pn + I(Z)

+ [1 +2a~_1-3(a~_1 +a~)]Pn(X)Pn(Y)Pn(z)

+ 2an-1 a~[Pn+ 1(X) Pn -1 (y) Pn + 1(Z)

+ Pn+l(X)Pn+l(Y)Pn-l(Z)+ Pn-l(X)Pn+l(Y)Pn+l(Z)]

- anan+ 1 [Pn + 2(X) Pn(Y) Pn(Z)

+ Pn(X)Pn+2(Y)Pn(Z)+ Pn(X)Pn(Y)Pn+2(Z)]; (2.5)

n-2
Bn(x,y,z)= L [(ak- D(2a~-2ak-1)

k=O

n-2
+2 L akak+l(ak+l- !)[Pk+2(X)Pk(Y)Pk+2(Z)

k=O

n-l
+2 L akak+l(ak - !)[Pk+2(X)Pk(Y)Pk(z)

k=O

and

with

n

En(x, y, z) = L ek(X, Y, z)
k~O

(nEZ+;x,y,zE[-l,l]) (2.7)

ek(x, Y, z) = 2Uk{ [ak PH 1(x) + ak~ 1 Pk-l(X)]

x [akPk+ I(Y) + ak-1Pk-l(Y)] Pk(Z)

+ [akPk+l(X)+ak-lPk-l(X)]Pk(Y)

x [akPk+l(Z) + Uk Pk(Z) + ak-l Pk-l(Z)]

- ~UkPk(X)Pk(Y)Pk(Z)
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+ Pk(X)[akPk+ ley) + Uk Pk(Y) + ak~ 1 Pk-l(Y)]

X [akPk(Z) +UkPk(Z) +ak-lP _l(Z)]}

- ak(Uk-l +Uk)[Pk+ l(X) Pk(Y) Pk(Z)

+ Pk(X)Pk+l(Y)Pk(Z) + Pk(X)Pk(Y)Pk+l(Z)]

- ak-l(Uk- l + Uk)[Pk-_2(X) Pk(y) Pk(Z)

+ Pk(X)Pk-2(Y)Pk(Z) +Pk(X)Pk(Y)Pk 2(Z)]. (2.8)

Here {ak}, {Uk} (kEZ+) are recurrence coefficients in (U)!or the polyno
mials Pn(x) (nEZ+) and 1~x, Y, z~ 1.

Proof In view of the three-term recurrence relation (1.1) it is not
difficult to see that

X
2
p,,(X) = a"a,,+ 1Pn+2(X) + a"(u,, + U,,+ 1) P,,+ leX)

+(a~_l+a~+u~)p"(x)+a,, l(U" l+U,,)Pn_J(X)

By (2.2) we have

(z- )«(+ Z)Pk(X) Pk(y) Pk(z)

= (1 + 2xyz - x2 y2- Z2) Pk(X)Pk(Y) Pk(z)

Pk(X) Pk(y) Pk(z) + 2a~Pk+ leX) Pk+ ley) Pk+ l(Z)

+ 2ak_laiPk+ leX) Pk- dy) Pk+ l(Z)

+ 2ak~ 1a; Pk+ leX) Pk + l(Y) Pk~ l(Z)

+2aLl akPk+l(X)Pk l(Y)Pk-l(Z)

+ 2ak_l a; Pk_l(X) Pk+ 1(y) Pk + 1(Z)

+ 2akaL 1 Pk l(X)Pk-l(Y)Pk+l(Z)

+ 2aL 1akPk_l(X) Pk+ l(Y) Pk-l (z)

+ 2aL JPk-l(X) Pk-l(Y) Pk-l(Z) + ek(X' Y, z)

-akak+lPk+2(X)Pk(Y)Pk(Z) (ak 1 +ak)Pk(x)h(Y)Pk(z)

-ak -2ak-l Pk-2(X) Pk(Y) Pk(z) ~ akak+ IPk(X) Pk+ 2(Y) Pk(z)

(ai 1 +a;) Pk(X)Pk(Y) Pk(Z) ak-2ak-lh(X)h-2(Y) Pk(Z)

-ak ak+ 1 hex) Pk(Y) Pk +2(Z) - (aL 1 +aD Pk(X) Pk(y) Pk(z)

ak_2 ak_l Pk(X) Pk(Y) Pk _2(Z),
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where ek(x, Y, z) is defined by (2.8). We regroup similar terms of the
relation

(z-c)((+ -z)Pk(x)Pk(Y)Pk(z)

= ek(x, y, z) +2aiPk+ I(X) Pk+ I(Y) Pk+ 1(z)

+ 2aL 1 Pk-l(X) Pk-l(Y) Pk-l(Z)

+ [1- 3(aL 1 + aD] Pk(x) Pk(Y) Pk(z)

+ 2ak_l a~Pk+ 1(x) Pk-l (y) PH I(Z) - ak_ zak-l Pk(x) Pk- z(y) Pk(z)

+ 2ak_la~PH I(X) PH I(Y) Pk-l(Z) - ak- Zak- 1 Pk(x) Pk(y) Pk-z(z)

+ 2ak_ 1a~Pk_l(x) Pk+ I(Y) PH I(Z) - ak-Z ak-l Pk-z(x) Pk(y) Pk(z)

+ 2aL 1 akPk+ I(X) Pk-l(Y) Pk-l(Z) - akak+ 1 PH z(x) Pk(y) Pk(z)

+ 2aL 1 akPk-l (x) Pk-l(Y) PH I(Z) - akak+ 1 Pk(x) Pk(y) PHZ(Z)

+ 2aL 1 akPk-l(x) Pk+ I(Y) Pk-l(Z) - akak+ 1 Pk(x) PHZ(Y) Pk(z).

For the proof of formulae (2.4)-(2.8) we consider the following "basic"
terms (the others are treated in a similar manner):

n

L1 = L {2aiPk+l(x)Pk+l(Y)Pk+l(Z)
k~O

+ [1-3(aLI +a~)JPk(x)Pk(Y)Pk(Z)

+ 2aL 1 Pk-l(X) Pk-l(Y) Pk-l(Z)},

n

Lz = L [2ak-la~Pk+l(x)Pk-l(Y)Pk+l(Z)
k=O

and

n

L3 = L [2aLl akPk+l(X)Pk-l(Y)Pk_l(Z)
k=O

Using P_l(X)=O and 2ai-3a~+!=(ak- !)(2ai-2ak-1) (kE£:+), we
have
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=2a~Pn+ l(X) Pn+ l(Y) Pn+ 1(Z)

+ [2a~_l +1- 3(a~ 1 +a~)J Pn(X)P,,(Y)Pn(Z)

n-2
+ L [(ak- !)(2a~ 2ak-1)
k~O

+ (ak_l - !)(2a~ -1- 2ak 1 -1)J Pk(X) Pk(Y) Pk(Z),

Next, note thatp_2(x)=P_l(X)=0; then

n-1
L2 =2 L aka~+lPk+2(X)Pk(Y)Pk+2(Z)

k=O

n-2
- L akak+lPk+2(X)Pk(Y)Pk+2(Z)
k~O

n-2
+ 2 L akak+ 1(ak+ 1 - !)Pk+2(X)Pk(Y) Pk+2(Z),

k~O

In a similar way

n-1
+2 L akak+1(ak !) Pk+2(X) Pk(Y)Pk(Z),

k=O

101

Formulae (2.4)-(2.8) are a consequence of the last three formulae.

Remarks. (1) The above result holds in particular for D.P. in Nevai's
class.

(2) For an even weight w(x) on [-1,1] formulae (2.4)-(2.8) were
announced in [35].

(3) A similar result can be obtained for the trilinear form

n

L qk(X) qk(Y) qk(Z)
k~O

where {qn} (n E Z +) is the system of the functions or the polynomials of
the second kind [45,51].

(4) Many papers are devoted to the investigations and the applica~

tions of the kernel f0n (x, Y, z) for the classical polynomials and its
generalizations (cf. [4, 7, 10, 11, 13, 14, 17, 18, 2<k23, 25-27, 38-44,

(5) The following curious result can be inferred from Lemma 2.1.
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COROLLARY 2.2. For an ONSP {Pn} (n E Z +) with respect to an even
weight function w(x) on [-1, 1]; we have the representation for all
x E [ -1, 1] and n E Z + :

n

2(x-1f(x+!) L pi(x)
k=O

=2a~p~+1(X)+[1 +2a~_1-3(a~_1 +a~)]p~(x)

+ 6an_ 1a~p~ + l(X) Pn-l(X) - 3anan+ 1 Pn +z(x) p~(x)
n-Z

+6 L akak+l(ak+l- !)Pk(x)pLz(x)
k=O

n-Z
+ L [(ak - !)(2a~-2ak-1)
k~O

n-l

+6 L akak+l(ak- !)p~(x)Pk+z(x).
k~O

Infact, since w(x) is even un=O (nEl'+) andfor x=y=z

(z - (_)(( + - z) = (x - 1)Z (2x + 1) ( - 1 :( x :( 1).

Throughout this paper we consider ONSP {Pn} (nEl'+) with respect to
the weight w(x) on [-1, 1], for which the following hypothesis is valid:
there exists a positive L~-integrable function cp(x) such that

IPn(x)1 :( cp(x) (2.9)

The following statement can be inferred from Lemma 2.1

LEMMA 2.3. If(1.3) and (2.9) hold, then

I(z- C)(( + -z) ~n(x, y, z)1

:( IAn(x, y, z) + Bn(x, y, z) + En(x, y, z)1

:(CA-;:,<p(x) <p(y) <p(z) (nEZ+; -1<x,y,z<1). (2.10)

We indicate some examples of ONSP {Pn} (nEl'+), satisfying the
condition (2.9). Throughout C, C", C,,(;, ... denote positive constants,
independent of n E l' + and x, y, z E ( -1, 1). The same symbol does not
necessarily denote the same constant from line to line.

1. Let w",p(x) = (1-x)" (1 + x)P be a Jacobi weight on [ -1, 1] with
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parameters a and f3( rx, f3 > -1 ). For classical orthonormal (with weight
w~,p, Jacobi polynomials: {p~a,p)(x)} (nEZ,J

Ip~a.Il)(x)1 :::; C",p(1- x) -(a/2+ 1/4) (1 + x) -(Il/2+ 1/4)

(n E Z +; -1 < x < 1; ()(, f3 > - !)
and

(n E Z +; -1 < x < 1; -1 < IX, f3 < - !)
are valid. In this case for the recurrence coefficients

a 2_ a(a,p) 2 _ 4n(n + a)(n + f3)(n + ()( + 13 + 2)
n-[ n ] -(2n+a+f3-1)(2n+a+f3+2)2(2n+ex+f3+1)

_ 1 1 - 2(1X
2 + 13

2
) (~)

- 4 + 16n2 + 0 n3 '

13
2

- a
2

13
2

- a
2

( 1 )
Un = u~~,I3) = (2n + a + f3)(2n + ex + 13 + 2) =~+ 0 n 3

the condition

n n

"~== .;V~~,I3) = 1+ I lar,ll) - ! I+ L lu~~,I3) I~ C
k=O k 0

is fulfilled.

2. Consider orthonormal system {Pn} (n E Z +) generated by the
recurrence relation (1.1), where

n

L (k + 1)(11 - 4at+ 11 + 2 IUk I):::; C log(n + 1)
k=O

(n= 1, 2, ... ).

In [33] (cr. also [50J) P. Nevai proved that there exist positive constants
C1, C2 independent of x E [ 1, 1J and n E Z + such that

If we suppose

co co

L (k+1)l ak-!I+ I (k+1)j Ukl<oo, (2.11)
k=O k=O

then

(nEZ+; -1<x<1)
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max IPn(x)1 ~ C(n + 1)
-1::E;x::O:;;l

hold [15, 31, 50].
In particular, Bernstein-Szego polynomials [48, pp. 44-45], Askey

Wilson q-polynomials {Pn(x; a, b, e, dl q)} max(lql, lal, Ibl, lei, Idl < 1)
[2,3,5], and the orthogonal polynomial system {e~a)(x;q)} (a>O,
Iql < 1) introduced by M. E. H. Ismail and F. S. Mulla [19] satisfy (2.11).

3. In [32], P.Nevai studied ONSP {Pn} (nEZ+), defined by the
three-term recurrence relation (1.1) with

1 (-ltE (1)a =-+ +0 -
n 2 n n2 ,

_(-It D (~)
Un - +0 2'n n

where E, D are absolute constants. In this case there exist three positive
numbers a, b, and e such that

and

Note that for such parameters

.At;; ~ e log(n + 2)

If

then one has a generalized Jacobi polynomial.
Let us define the auxiliary functions

- 1
ECn(x, y, z) = cp(x) cp(y) cp(z) ECn(x, y, z)

_ 1

An(x, y, z) = cp(x) cp(y) cp(z) An(x, y, z)

_ 1
Bn(x, y, z) = cp(x) cp(y) cp(z) Bn(x, y, z) (n E Z+; -1 < x, y, z< 1),

_ 1

En(x, y, z) = cp(x) cp(y) cp(z) En(x, y, z)

_ 1

Kn(x, y, z; A) = cp(x) cp(y) cp(z) Kn(x, y, z; A) (2.12)
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where cp(x) is the majorant of {Pn} (neZ+) (d. (2.9» and
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n

Kn(X,y,Z;A)= L Akh(X)Pk(Y)Pk(Z) (neZ+; -l<x,y,z<l) 3)
k=O

are the first partial sums of the orthogonal series (1.7).

THEOREM 2.4. Let ONSP {Pn} (neZ+) satisfy (1.3), (2.9) and suppose
that

ro

L ~ jA(Ak)1 < CD
k=O

and

lim An .JY;', = 0
n--+ co

hold. Then the kernel

K(x, Y, z; A) = lim K,,(x, Y, z; ;.)
n-CO

exists for every x, y, Z e (-1, 1) and

4 . a + /3 +Y . a + /3 - y . p+ y - IX • IX /3 +Y -( P
sm 2 sm 2 sm 2 sm 2 K cos (X,cos ,cos y;

co

= L A(Ak)[Ak(cos IX, cos /3, cos y)
k=O

+Bk(cos (x, cos {J, cos y) +Ek(cos ct, cos /3, cos y)], (2.16)

where the series on the right-hand side are absolutely convergent
o< IX, /3, y < n.

Proof. By the aid of Abel's summation by parts it can be inferred from
(2.13) that

K,,(x, y, z; ),) = AnDn(x, y, z)
n'~ 1

- L A(Ak) .@k(X'y, Z)
k=O

where the kernel .@n(X,y, z) is defined by (1.6). In consequence of
formula (2.4) and the definition (2.12)
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(z- '-)(C + -z) K(x, y, z; A)

= lim An[An(x, y, z) + Bn(x, y, z) + En(x, y, z)]
n~ 00

n-l

- lim L L1(Ad[Ak(x, y, z) + Bk(x, y, z) + Ek(x, y, z)].
n-}-ook=O

In view of the relations (1.3), (2.9), (2.10), (2.15), the first term of the last
sum vanishes for all x, y, z E ( -1, 1). The second term can be estimated
with

00

C L JVk fL1(Ak)f,
k~O

and from (2.14) we obtain that the series

00

L L1(Ak)[Ak(x, y, z) +Bk(x, y, z) +Ek(x, y, z)]
k~O

converge absolutely for x, y, z E ( -1, 1). Putting x = cos IX, y = cos {3,
z = cos y and by (2.3), we have the formula (2.16), in accordance with our
statement.

3. A CONSTRUCTION OF THE "DOUBLE-HuMPBACKED MAJORANT":

ESTIMATION OF THE LEBESGUE QUASIFUNCTIONS

The estimations of Lebesgue functions of the kernel play an important
role in the treatment of expansions of functions in orthogonal polynomials.
We begin with the construction of the majorant. It is well known [29; 30,
p. 262J that the nonnegative function

(n E Z + ; ~, '1 E (a, b) c ( - 1, 1))

is called a "humpbacked majorant" for the sequence Fn(~, 1]) in the variable
I] at the point ~ if the following conditions are satisfied:

(1) for all nEZ+ and~,'1E(a,b)

(2) for fixed n E Z+, ~ E (a, b),the function F:(~, 1]) is nondecreasing
on (G, () and nonincreasing on ((, b).

We say that the function ~n(x, y, z) (-1 < x, y, z < 1; n E Z+) (cf. (1.6),
(2.12)) has on ( -1, 1) a "double-humpbacked majorant" ~:(x, y, z) in the
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variable z at the points' + (cf. (2.1)) if on each of the intervals (-1,
and (xy, 1) it possesses a ~'humpbacked majorant" at the points (_, (+'
respectively; i.e., for fixed x and y, @:(x, y, z) is nondecreasing on
(-1, ( ), nonincreasing on «( , xy), nondecreasing on (xy, , +), and non
increasing on (, + , 1).

The following assertions playa significant role in our estimations.

LEMMA 3.1. Let ONSP {Pn} (neZ+) satisfy the condition (1.3) and
(2.9). Then the function @n(x, y, z) has on (-1, 1) in the variable z a
"double-humpbacked majorant" @:(x, y, z) at the points , , I; +
furthermore, the estimation

(3.1)

holds, where the constant C> 0 is independent of n E Z + and x, y E ( -1, 1).

Proof We show, that there exist "humpbacked majorants" for the
function @n(x,y, z) on ( 1, xy) and (xy, 1) at the points Land'+'
respectively. We construct the "humpbacked majorant" for @n(x,y, z) on
(xy, 1) at the point (+; on the interval (-1, xy) the construction can be
deduced in a similar way.

At first, consider the case

Put

i.e., x =F y.

uf~ v' 2 2)--1 (l-x )(I-y ,
n+

(3.2)

By the relation (1.5) On-l>O, tffn-l>O (n-4oo). It follows from (1.3), (1.6),
(2.9), (2.10) that the following estimations are valid:

640/67/1-8

for all x, y, z e ( 1, 1)

for all x, y, ZE 1,1),
satisfying the condition

I(z-L)«(+ -z)1 >0,

(3.3)

(3.4 )
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where the constants C> 0 do not depend on n E Z + and x, y, z E ( -1, 1).
Thus we define the "humpbacked majorant" by

1 1
if xy:(z < (+ -bnCA';; --,

J(1-x2)(1- y2) (+-z

1
if (+ -bn:(z«+C(n + 1) (1- x2)(1- y2)'

~::(x, y, z) =
1 1

C(n+l) --, if (+:(z«++CnJ (1 - x 2)(1- y2) 1- ( +

1 1
ifCA';; --, ( + + Cn:( z < 1,

J(1-x2)(1- y2) z-(+

where the constants C> 0 are independent of n E Z + and x, y, z E ( -1, 1).
In fact, when xy:( z < 1, then

So, for all x, y E ( -1, 1) and n E Z + the estimate

holds. Next, by the defining relation

o~::(x, y, z) 0 ( I' s; )
oz > xy:(z<",+-un ,

and

o~::(x,y,z) 0(1' fP 1)
OZ < '" + + (On :( Z <

Consequently, the function ~::(x, y, z) is nondecreasing on (xy, (+) and
nonincreasing on ((+,1). So ~::(x,y,z) is a "humpbacked majorarit" for
~n(x, y, z) on (xy, 1) at the point (+.

Now consider

[n(x, y) =r~::(x, y, z) dz
xy

(n E Z + ; -1 < x, y < 1).
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This integral can be estimated in the following way; in virtue of
majorant §J;(x, y, z)
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where the constant C> 0 is independent of n E Z + and x, y E ( -1, 1), in
accordance with out statement.

We still must consider the remaining case

c+ = 1, i.e., x = y, (_ = 2x2
- L

In this case we define the "humpbacked majorant" by

{

1 1
CAt;; -1-2 -1-,

- -x -z
~:(x,y,z)=

C(n + 1) (1_\2)2'

where C>O are the absolute constants and <5 n =(At;;/(n+l)(1-x2
).
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Obviously, the function ~n(x, x, z) is nondecreasing on (x2
, 1 - on) and

nonincreasing on (1- c:5 n,d. Furthermore, as above, we have by
straightforward calculation

By the defining relation

II - * 1 n + 1!!fin (x, x, z) dz ~ CA;; -1--2 In --,
x 2 -x A;;

where the constant C> 0 is independent of n E 7L + and x E ( -1, 1). It coin
cides with (3.1) as x = y.

We have completed the proof of our assertion.

By virtue, of "symmetry" of the function ~:(x, y, z) we can construct
"double-humpbacked majorants" in the variables x and y.

COROLLARY 3.2. Assume that ONSP {Pn} (n E Z +) with the weight
w(x) satisfy (1.3) aJ1d (2.9). Then for Lebesgue's quasifunctions In the
following estimations hold:

(3.5)

The constants C> 0 in the relations (3.5) are independent of n E 7L + and
x, y E ( -1, 1). In fact, the first estimation (3.5) can be deduced from (3.1),
and, consequently,

II II - II 1 n + 1l!!fin(x, y, z)1 dy dz ~ C J A;; In - dy
-1 -1 -1 (1- x2)(1- y2) A;;

1 n+l
~C ~A;;ln--.

y l-x2 A;;

This shows the validity of Corollary 3.2.
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We consider the pointwise estimation for the partial sums of the
following Fourier expansions

and

00

L 1kPk(x)Pk(Y),
,1.:;=0

1k=rf(Z)Pk(Z)W(z)dz(kEZ+)
-1

00

L 1kkPk(x),
k~O

This problem arises, for example, in the Fourier method for partial
difference equations [23, pp. 121-124].

COROLLARY 3.3. Let ONSP {Pn} (nEZ+) satisfy (1.3) and (2.9). Then
the following statements are valid:

(1) at every x, Y E ( 1, 1) the following estimation

is valid, where the constant C> 0 is independent of f, nEll +, and
x,yE(-I,I);

(2) at every x E ( -1, 1) the estimation

Sup [If(Y, z)l<p(y) <p(z) w(y) w(z)]
y,zE(-l,l)

holds; the constant C> 0 here is independent of the function f and the
variables n E Z +, X E ( - 1, 1).

It can be seen without difficulty that

±APk(x)Pk(Y) = r f(z).@n(x,y,z)w(z)dz
k=o -1
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±lkkPk(x) = rrf(y,z)~n(x,y,z)w(y)w(z)dydz,
k=O -1 -1

from which by (3.5) the results follow.

Remark. The methods of Section 3 give us an opportunity to
investigate ONSP {Pn} (n E Z +) for which, instead of (2.9), the estimation

holds, but the right-hand side of (3.5) becomes more complicated.
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